Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.184
Filtrar
1.
Ann Clin Microbiol Antimicrob ; 23(1): 32, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600542

RESUMO

BACKGROUND: Elizabethkingia is emerging as an opportunistic pathogen in humans. The aim of this study was to investigate the clinical epidemiology, antimicrobial susceptibility, virulence factors, and genome features of Elizabethkingia spp. METHODS: Clinical data from 71 patients who were diagnosed with Elizabethkingia-induced pneumonia and bacteremia between August 2019 and September 2021 were analyzed. Whole-genome sequencing was performed on seven isolates, and the results were compared with a dataset of 83 available Elizabethkingia genomes. Genomic features, Kyoto Encyclopedia of Genes and Genomes (KEGG) results and clusters of orthologous groups (COGs) were analyzed. RESULTS: The mean age of the patients was 56.9 ± 20.7 years, and the in-hospital mortality rate was 29.6% (21/71). Elizabethkingia strains were obtained mainly from intensive care units (36.6%, 26/71) and emergency departments (32.4%, 23/71). The majority of the strains were isolated from respiratory tract specimens (85.9%, 61/71). All patients had a history of broad-spectrum antimicrobial exposure. Hospitalization for invasive mechanical ventilation or catheter insertion was found to be a risk factor for infection. The isolates displayed a high rate of resistance to cephalosporins and carbapenems, but all were susceptible to minocycline and colistin. Genomic analysis identified five ß-lactamase genes (blaGOB, blaBlaB, blaCME, blaOXA, and blaTEM) responsible for ß-lactam resistance and virulence genes involved in stress adaptation (ureB/G, katA/B, and clpP), adherence (groEL, tufA, and htpB) and immune modulation (gmd, tviB, cps4J, wbtIL, cap8E/D/G, and rfbC). Functional analysis of the COGs revealed that "metabolism" constituted the largest category within the core genome, while "information storage and processing" was predominant in both the accessory and unique genomes. The unique genes in our 7 strains were mostly enriched in KEGG pathways related to microRNAs in cancer, drug resistance (ß-lactam and vancomycin), ABC transporters, biological metabolism and biosynthesis, and nucleotide excision repair mechanisms. CONCLUSION: The Elizabethkingia genus exhibits multidrug resistance and carries carbapenemase genes. This study presents a comparative genomic analysis of Elizabethkingia, providing knowledge that facilitates a better understanding of this microorganism.


Assuntos
Antibacterianos , Infecções por Flavobacteriaceae , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Antibacterianos/farmacologia , Genoma Bacteriano/genética , Farmacorresistência Bacteriana/genética , Infecções por Flavobacteriaceae/epidemiologia , Infecções por Flavobacteriaceae/genética , Genômica , beta-Lactamases/genética , Testes de Sensibilidade Microbiana
2.
World J Microbiol Biotechnol ; 40(6): 177, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656467

RESUMO

During the COVID-19 pandemic, the occurrence of carbapenem-resistant Klebsiella pneumoniae increased in human clinical settings worldwide. Impacted by this increase, international high-risk clones harboring carbapenemase-encoding genes have been circulating in different sources, including the environment. The blaKPC gene is the most commonly disseminated carbapenemase-encoding gene worldwide, whose transmission is carried out by different mobile genetic elements. In this study, blaKPC-2-positive Klebsiella pneumoniae complex strains were isolated from different anthropogenically affected aquatic ecosystems and characterized using phenotypic, molecular, and genomic methods. K. pneumoniae complex strains exhibited multidrug-resistant and extensively drug-resistant profiles, spotlighting the resistance to carbapenems, ceftazidime-avibactam, colistin, and tigecycline, which are recognized as last-line antimicrobial treatment options. Molecular analysis showed the presence of several antimicrobial resistance, virulence, and metal tolerance genes. In-depth analysis showed that the blaKPC-2 gene was associated with three different Tn4401 isoforms (i.e., Tn4401a, Tn4401b, and Tn4401i) and NTEKPC elements. Different plasmid replicons were detected and a conjugative IncN-pST15 plasmid harboring the blaKPC-2 gene associated with Tn4401i was highlighted. K. pneumoniae complex strains belonging to international high-risk (e.g., ST11 and ST340) and unusual clones (e.g., ST323, ST526, and ST4216) previously linked to clinical settings. In this context, some clones were reported for the first time in the environmental sector. Therefore, these findings evidence the occurrence of carbapenemase-producing K. pneumoniae complex strains in aquatic ecosystems and contribute to the monitoring of carbapenem resistance worldwide.


Assuntos
Antibacterianos , Variação Genética , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Plasmídeos , beta-Lactamases , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/enzimologia , beta-Lactamases/genética , beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Plasmídeos/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Infecções por Klebsiella/microbiologia , Ecossistema , Carbapenêmicos/farmacologia , Microbiologia da Água , Elementos de DNA Transponíveis
3.
Mol Biol Rep ; 51(1): 566, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656625

RESUMO

BACKGROUND: Escherichia coli is the most common etiological agent of urinary tract infections (UTIs). Meanwhile, plasmid-mediated quinolone resistance (PMQR) is reported in E. coli isolates producing extended-spectrum ß-lactamases (ESBLs). Furthermore, the reservoirs and mechanisms of acquisition of uropathogenic Escherichia coli (UPEC) strains are poorly understood. On the other hand, UTIs are common in pregnant women and the treatment challenge is alarming. METHODS AND RESULTS: In the present study, 54 pregnant women with acute cystitis were included. A total of 108 E. coli isolates, 54 isolates from UTI and 54 isolates from faeces of pregnant women (same host) were collected. In the antimicrobial susceptibility test, the highest rate of antibiotic resistance was to nalidixic acid (77%, 83/108) and the lowest rate was to imipenem (9%, 10/108). Among the isolates, 44% (48/108) were ESBLs producers. A high frequency of PMQR genes was observed in the isolates. The frequency of PMQR genes qnrS, qnrB, aac(6')-Ib-cr, and qnrA was 58% (63/108), 21% (23/108), 9% (10/108), and 4% (4/108), respectively. Meanwhile, PMQR genes were not detected in 24% (20/85) of isolates resistant to nalidixic acid and/or fluoroquinolone, indicating that other mechanisms, i.e. chromosomal mutations, are involved in resistance to quinolones, which were not detected in the present study. In ESBL-producing isolates, the frequency of PMQR genes was higher than that of non-ESBL-producing isolates (81% vs. 53%). Meanwhile, UTI and faeces isolates mainly belonged to phylogenetic group B2 (36/54, 67% and 25/54, 46%, respectively) compared to other phylogenetic groups. In addition, virulence factors and multidrug-resistant (MDR) were mainly associated with phylogenetic group B2. However, predominant clones in faeces were not found in UTIs. Rep-PCR revealed the presence of 85 clones in patients. Among the clones, 40 clones were detected only in faeces (faeces-only), 35 clones only in UTI (UTI-only) and 10 clones in both faeces and UTI (faeces-UTI). We found that out of 10 faeces-UTI clones, 5 clones were present in the host's faeces flora. CONCLUSION: This study revealed a high rate of resistance to the quinolone nalidixic acid and a widespread distribution of PMQR genes in MDR E. coli strains producing ESBLs. The strains represented virulence factors and phylogenetic group B2 are closely associated with abundance in UTI and faeces. However, the predominant clones in faeces were not found in UTIs and it is possible that rep-PCR is not sufficiently discriminating clones.


Assuntos
Antibacterianos , Cistite , Infecções por Escherichia coli , Escherichia coli , Fezes , Testes de Sensibilidade Microbiana , Plasmídeos , Quinolonas , beta-Lactamases , Humanos , Feminino , beta-Lactamases/genética , Plasmídeos/genética , Fezes/microbiologia , Quinolonas/farmacologia , Gravidez , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/tratamento farmacológico , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Escherichia coli/efeitos dos fármacos , Adulto , Antibacterianos/farmacologia , Cistite/microbiologia , Farmacorresistência Bacteriana/genética , Prevalência , Infecções Urinárias/microbiologia , Ácido Nalidíxico/farmacologia
4.
BMC Microbiol ; 24(1): 144, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664608

RESUMO

BACKGROUND: Klebsiella pneumoniae infections have become a major cause of hospital acquired infection worldwide with the increased rate of acquisition of resistance to antibiotics. Carbapenem resistance mainly among Gram negative is an ongoing problem which causes serious outbreaks dramatically limiting treatment options. This prospective cross-sectional study was designed to detect blaKPC gene from carbapenem resistant K. pneumoniae. MATERIALS AND METHODS: A totally of 1118 different clinical specimens were screened and confirmed for KPC producing K. pneumoniae phenotypically using Meropenem (10 µg) disc. The blaKPC gene was amplified from the isolates of K. pneumoniae to detect the presence of this gene. RESULT: Of the total samples processed, 18.6% (n = 36) were K. pneumoniae and among 36 K. pneumoniae, 61.1% (n = 22/36) were meropenem resistant. This study demonstrated the higher level of MDR 91.7% (n = 33) and KPC production 47.2% (n = 17) among K. pneumoniae isolates. The blaKPC gene was detected in 8.3% (n = 3) of meropenem resistant isolates. CONCLUSION: Since the study demonstrates the higher level of MDR and KPC producing K. pneumoniae isolates that has challenged the use of antimicrobial agents, continuous microbiology, and molecular surveillance to assist early detection and minimize the further dissemination of blaKPC should be initiated. We anticipate that the findings of this study will be useful in understanding the prevalence of KPC-producing K. pneumoniae in Nepal.


Assuntos
Antibacterianos , Proteínas de Bactérias , Infecções por Klebsiella , Klebsiella pneumoniae , Meropeném , Testes de Sensibilidade Microbiana , Centros de Atenção Terciária , beta-Lactamases , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/enzimologia , beta-Lactamases/genética , Humanos , Nepal/epidemiologia , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/epidemiologia , Centros de Atenção Terciária/estatística & dados numéricos , Proteínas de Bactérias/genética , Estudos Transversais , Estudos Prospectivos , Antibacterianos/farmacologia , Meropeném/farmacologia , Masculino , Farmacorresistência Bacteriana Múltipla/genética , Feminino , Adulto , Pessoa de Meia-Idade , Adulto Jovem , Idoso , Adolescente
5.
BMC Microbiol ; 24(1): 143, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664628

RESUMO

BACKGROUND: Broiler chickens are frequently colonized with Extended-Spectrum Beta-Lactamase- (ESBL-) and plasmid mediated AmpC Beta-Lactamase- (pAmpC-) producing Enterobacterales, and we are confronted with the potential spread of these resistant bacteria in the food chain, in the environment, and to humans. Research focused on identifying of transmission routes and investigating potential intervention measures against ESBL- and pAmpC- producing bacteria in the broiler production chain. However, few data are available on the effects of cleaning and disinfection (C&D) procedures in broiler stables on ESBL- and pAmpC- producing bacteria. RESULTS: We systematically investigated five broiler stables before and after C&D and identified potential ESBL- and pAmpC- colonization sites after C&D in the broiler stables, including the anteroom and the nearby surrounding environment of the broiler stables. Phenotypically resistant E. coli isolates grown on MacConkey agar with cefotaxime were further analyzed for their beta-lactam resistance genes and phylogenetic groups, as well as the relation of isolates from the investigated stables before and after C&D by whole genome sequencing. Survival of ESBL- and pAmpC- producing E. coli is highly likely at sites where C&D was not performed or where insufficient cleaning was performed prior to disinfection. For the first time, we showed highly related ESBL-/pAmpC- producing E. coli isolates detected before and after C&D in four of five broiler stables examined with cgMLST. Survival of resistant isolates in investigated broiler stables as well as transmission of resistant isolates from broiler stables to the anteroom and surrounding environment and between broiler farms was shown. In addition, enterococci (frequently utilized to detect fecal contamination and for C&D control) can be used as an indicator bacterium for the detection of ESBL-/pAmpC- E. coli after C&D. CONCLUSION: We conclude that C&D can reduce ESBL-/pAmpC- producing E. coli in conventional broiler stables, but complete ESBL- and pAmpC- elimination does not seem to be possible in practice as several factors influence the C&D outcome (e.g. broiler stable condition, ESBL-/pAmpC- status prior to C&D, C&D procedures used, and biosecurity measures on the farm). A multifactorial approach, combining various hygiene- and management measures, is needed to reduce ESBL-/pAmpC- E. coli in broiler farms.


Assuntos
Proteínas de Bactérias , Galinhas , Desinfecção , Escherichia coli , Fazendas , beta-Lactamases , Animais , beta-Lactamases/genética , beta-Lactamases/metabolismo , Galinhas/microbiologia , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Desinfecção/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/transmissão , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/prevenção & controle , Antibacterianos/farmacologia , Filogenia , Plasmídeos/genética , Tipagem de Sequências Multilocus , Sequenciamento Completo do Genoma
6.
BMC Genomics ; 25(1): 408, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664636

RESUMO

BACKGROUND: Klebsiella pneumoniae, a notorious pathogen for causing nosocomial infections has become a major cause of neonatal septicemia, leading to high morbidity and mortality worldwide. This opportunistic bacterium has become highly resistant to antibiotics due to the widespread acquisition of genes encoding a variety of enzymes such as extended-spectrum beta-lactamases (ESBLs) and carbapenemases. We collected Klebsiella pneumoniae isolates from a local tertiary care hospital from February 2019-February 2021. To gain molecular insight into the resistome, virulome, and genetic environment of significant genes of multidrug-resistant K. pneumoniae isolates, we performed the short-read whole-genome sequencing of 10 K. pneumoniae isolates recovered from adult patients, neonates, and hospital tap water samples. RESULTS: The draft genomes of the isolates varied in size, ranging from 5.48 to 5.96 Mbp suggesting the genome plasticity of this pathogen. Various genes conferring resistance to different classes of antibiotics e.g., aminoglycosides, quinolones, sulfonamides, tetracycline, and trimethoprim were identified in all sequenced isolates. The highest resistance was observed towards carbapenems, which has been putatively linked to the presence of both class B and class D carbapenemases, blaNDM, and blaOXA, respectively. Moreover, the biocide resistance gene qacEdelta1 was found in 6/10 of the sequenced strains. The sequenced isolates exhibited a broad range of sequence types and capsular types. The significant antibiotic resistance genes (ARGs) were bracketed by a variety of mobile genetic elements (MGEs). Various spontaneous mutations in genes other than the acquired antibiotic-resistance genes were observed, which play an indirect role in making these bugs resistant to antibiotics. Loss or deficiency of outer membrane porins, combined with ESBL production, played a significant role in carbapenem resistance in our sequenced isolates. Phylogenetic analysis revealed that the study isolates exhibited evolutionary relationships with strains from China, India, and the USA suggesting a shared evolutionary history and potential dissemination of similar genes amongst the isolates of different origins. CONCLUSIONS: This study provides valuable insight into the presence of multiple mechanisms of carbapenem resistance in K. pneumoniae strains including the acquisition of multiple antibiotic-resistance genes through mobile genetic elements. Identification of rich mobilome yielded insightful information regarding the crucial role of insertion sequences, transposons, and integrons in shaping the genome of bacteria for the transmission of various resistance-associated genes. Multi-drug resistant isolates that had the fewest resistance genes exhibited a significant number of mutations. K. pneumoniae isolate from water source displayed comparable antibiotic resistance determinants to clinical isolates and the highest number of virulence-associated genes suggesting the possible interplay of ARGs amongst bacteria from different sources.


Assuntos
Proteínas de Bactérias , Carbapenêmicos , Farmacorresistência Bacteriana Múltipla , Klebsiella pneumoniae , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Farmacorresistência Bacteriana Múltipla/genética , Carbapenêmicos/farmacologia , Humanos , Sequenciamento Completo do Genoma , Genoma Bacteriano , beta-Lactamases/genética , Antibacterianos/farmacologia , Filogenia , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/tratamento farmacológico , Testes de Sensibilidade Microbiana
7.
BMC Microbiol ; 24(1): 126, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622558

RESUMO

This study aimed to explore the role of the two-component system Bae SR in the mechanism of drug resistance in carbapenem-resistant A. baumannii (CRAB) using molecular docking and real-time polymerase chain reaction (PCR). The two-component system Bae SR of Acinetobacter baumannii was subjected to molecular docking with imipenem, meropenem, and levofloxacin. Antibacterial assays and fluorescence quantitative PCR were used to explore protein-ligand interactions and molecular biological resistance mechanisms related to CRAB. The analysis of the two-component system in A. baumannii revealed that imipenem exhibited the highest docking energy in Bae S at - 5.81 kcal/mol, while the docking energy for meropenem was - 4.92 kcal/mol. For Bae R, imipenem had a maximum docking energy of - 4.28 kcal/mol, compared with - 4.60 kcal/mol for meropenem. The highest binding energies for Bae S-levofloxacin and Bae R-levofloxacin were - 3.60 and - 3.65 kcal/mol, respectively. All imipenem-resistant strains had minimum inhibitory concentration (MIC) values of 16 µg/mL, whereas levofloxacin-resistant strains had MIC values of 8 µg/mL. The time-sterilization curve showed a significant decrease in bacterial colony numbers at 2 h under the action of 8 µg/mL imipenem, indicating antibacterial effects. In contrast, levofloxacin did not exhibit any antibacterial activity. Fluorescence quantitative PCR results revealed significantly increased relative expression levels of bae S and bae R genes in the CRAB group, which were 2 and 1.5 times higher than those in the CSAB group, respectively, with statistically significant differences. Molecular docking in this study found that the combination of Bae SR and carbapenem antibiotics (imipenem, meropenem) exhibited stronger affinity and stability compared with levofloxacin. Moreover, the overexpression of the two-component system genes in carbapenem-resistant A. baumannii enhanced its resistance to carbapenem, providing theoretical and practical insights into carbapenem resistance in respiratory tract infections caused by A. baumannii.


Assuntos
Acinetobacter baumannii , Carbapenêmicos , Carbapenêmicos/farmacologia , Meropeném/farmacologia , Simulação de Acoplamento Molecular , Reação em Cadeia da Polimerase em Tempo Real , Levofloxacino/farmacologia , Antibacterianos/farmacologia , Imipenem/farmacologia , Resistência a Medicamentos , Testes de Sensibilidade Microbiana , beta-Lactamases/genética
8.
PLoS One ; 19(4): e0298577, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635685

RESUMO

BACKGROUND: Infections caused by Stenotrophomonas maltophilia and related species are increasing worldwide. Unfortunately, treatment options are limited, whereas the antimicrobial resistance is increasing. METHODS: We included clinical isolates identified as S. maltophilia by VITEK 2 Compact. Ceftazidime/avibactam, meropenem/vaborbactam, imipenem/relebactam, cefiderocol, quinolones, and tetracycline family members were evaluated by broth microdilution method and compared with first-line treatment drugs. Minimum inhibitory concentrations (MICs) were reported for all antibiotics. We sequenced the Whole Genome of cefiderocol resistant strains (CRSs) and annotated their genes associated with cefiderocol resistance (GACR). Presumptive phylogenetic identification employing the 16S marker was performed. RESULTS: One hundred and one clinical strains were evaluated, sulfamethoxazole and trimethoprim, levofloxacin and minocycline showed susceptibilities of 99.01%, 95.04% and 100% respectively. Ceftazidime was the antibiotic with the highest percentage of resistance in all samples (77.22%). Five strains were resistant to cefiderocol exhibiting MIC values ≥ 2 µg/mL (4.95%). The ß-lactamase inhibitors meropenem/vaborbactam and imipenem/relebactam, failed to inhibit S. maltophilia, preserving both MIC50 and MIC90 ≥64 µg/mL. Ceftazidime/avibactam restored the activity of ceftazidime decreasing the MIC range. Tigecycline had the lowest MIC range, MIC50 and MIC90. Phylogeny based on 16S rRNA allowed to identify to cefiderocol resistant strains as putative species clustered into Stenotrophomonas maltophilia complex (Smc). In these strains, we detected GARCs such as Mutiple Drug Resistance (MDR) efflux pumps, L1-type ß-lactamases, iron transporters and type-1 fimbriae. CONCLUSION: Antimicrobial resistance to first-line treatment is low. The in vitro activity of new ß-lactamase inhibitors against S. maltophilia is poor, but avibactam may be a potential option. Cefiderocol could be considered as a potential new option for multidrug resistant infections. Tetracyclines had the best in vitro activity of all antibiotics evaluated.


Assuntos
Ácidos Borônicos , Ceftazidima , Stenotrophomonas maltophilia , Ceftazidima/farmacologia , 60607 , Meropeném , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/uso terapêutico , Stenotrophomonas , Filogenia , RNA Ribossômico 16S , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos/farmacologia , Combinação de Medicamentos , Imipenem/farmacologia , Testes de Sensibilidade Microbiana , beta-Lactamases/genética
9.
Genome Med ; 16(1): 58, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637822

RESUMO

BACKGROUND: Klebsiella pneumoniae is a major bacterial and opportunistic human pathogen, increasingly recognized as a healthcare burden globally. The convergence of resistance and virulence in K. pneumoniae strains has led to the formation of hypervirulent and multidrug-resistant strains with dual risk, limiting treatment options. K. pneumoniae clones are known to emerge locally and spread globally. Therefore, an understanding of the dynamics and evolution of the emerging strains in hospitals is warranted to prevent future outbreaks. METHODS: In this study, we conducted an in-depth genomic analysis on a large-scale collection of 328 multidrug-resistant (MDR) K. pneumoniae strains recovered from 239 patients from a single major hospital in the western coastal city of Jeddah in Saudi Arabia from 2014 through 2022. We employed a broad range of phylogenetic and phylodynamic methods to understand the evolution of the predominant clones on epidemiological time scales, virulence and resistance determinants, and their dynamics. We also integrated the genomic data with detailed electronic health record (EHR) data for the patients to understand the clinical implications of the resistance and virulence of different strains. RESULTS: We discovered a diverse population underlying the infections, with most strains belonging to Clonal Complex 14 (CC14) exhibiting dominance. Specifically, we observed the emergence and continuous expansion of strains belonging to the dominant ST2096 in the CC14 clade across hospital wards in recent years. These strains acquired resistance mutations against colistin and extended spectrum ß-lactamase (ESBL) and carbapenemase genes, namely blaOXA-48 and blaOXA-232, located on three distinct plasmids, on epidemiological time scales. Strains of ST2096 exhibited a high virulence level with the presence of the siderophore aerobactin (iuc) locus situated on the same mosaic plasmid as the ESBL gene. Integration of ST2096 with EHR data confirmed the significant link between colonization by ST2096 and the diagnosis of sepsis and elevated in-hospital mortality (p-value < 0.05). CONCLUSIONS: Overall, these results demonstrate the clinical significance of ST2096 clones and illustrate the rapid evolution of an emerging hypervirulent and MDR K. pneumoniae in a clinical setting.


Assuntos
Klebsiella pneumoniae , Klebsiella , Humanos , Klebsiella/genética , Centros de Atenção Terciária , Filogenia , Plasmídeos/genética , beta-Lactamases/genética , Antibacterianos
10.
Emerg Microbes Infect ; 13(1): 2337678, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38629492

RESUMO

Despite carbapenems not being used in animals, carbapenem-resistant Enterobacterales (CRE), particularly New Delhi metallo-ß-lactamase-producing CRE (NDM-CRE), are prevalent in livestock. Concurrently, the incidence of human infections caused by NDM-CRE is rising, particularly in children. Although a positive association between livestock production and human NDM-CRE infections at the national level was identified, the evidence of direct transmission of NDM originating from livestock to humans remains largely unknown. Here, we conducted a cross-sectional study in Chengdu, Sichuan Province, to examine the prevalence of NDM-CRE in chickens and pigs along the breeding-slaughtering-retail chains, in pork in cafeterias of schools, and in colonizations and infections from children's hospital and examined the correlation of NDM-CRE among animals, foods and humans. Overall, the blaNDM increases gradually along the chicken and pig breeding (4.70%/2.0%) -slaughtering (7.60%/22.40%) -retail (65.56%/34.26%) chains. The slaughterhouse has become a hotspot for cross-contamination and amplifier of blaNDM. Notably, 63.11% of pork from the school cafeteria was positive for blaNDM. The prevalence of blaNDM in intestinal and infection samples from children's hospitals was 21.68% and 19.80%, respectively. whole genome sequencing (WGS) analysis revealed the sporadic, not large-scale, clonal spread of NDM-CRE along the chicken and pig breeding-slaughtering-retail chain, with further spreading via IncX3-blaNDM plasmid within each stage of whole chains. Clonal transmission of NDM-CRE is predominant in children's hospitals. The IncX3-blaNDM plasmid was highly prevalent among animals and humans and accounted for 57.7% of Escherichia coli and 91.3% of Klebsiella pneumoniae. Attention should be directed towards the IncX3 plasmid to control the transmission of blaNDM between animals and humans.


Assuntos
Infecções por Enterobacteriaceae , Enterobacteriaceae , Criança , Humanos , Animais , Suínos , Enterobacteriaceae/genética , Estudos Transversais , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Galinhas , Escherichia coli/genética , beta-Lactamases/genética , Infecções por Enterobacteriaceae/epidemiologia , Infecções por Enterobacteriaceae/veterinária , Klebsiella pneumoniae/genética , Plasmídeos
11.
BMC Microbiol ; 24(1): 135, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654237

RESUMO

BACKGROUND: The emergence and spread of ß-lactamase-producing Klebsiella spp. has been associated with a substantial healthcare burden resulting in therapeutic failures. We sought to describe the proportion of phenotypic resistance to commonly used antibiotics, characterize ß-lactamase genes among isolates with antimicrobial resistance (AMR), and assess the correlates of phenotypic AMR in Klebsiella spp. isolated from stool or rectal swab samples collected from children being discharged from hospital. METHODS: We conducted a cross-sectional study involving 245 children aged 1-59 months who were being discharged from hospitals in western Kenya between June 2016 and November 2019. Whole stool or rectal swab samples were collected and Klebsiella spp. isolated by standard microbiological culture. ß-lactamase genes were detected by PCR whilst phenotypic antimicrobial susceptibility was determined using the disc diffusion technique following standard microbiology protocols. Descriptive analyses were used to characterize phenotypic AMR and carriage of ß-lactamase-producing genes. The modified Poisson regression models were used to assess correlates of phenotypic beta-lactam resistance. RESULTS: The prevalence of ß-lactamase carriage among Klebsiella spp. isolates at hospital discharge was 62.9% (154/245). Antibiotic use during hospitalization (adjusted prevalence ratio [aPR] = 4.51; 95%CI: 1.79-11.4, p < 0.001), longer duration of hospitalization (aPR = 1.42; 95%CI: 1.14-1.77, p < 0.002), and access to treated water (aPR = 1.38; 95%CI: 1.12-1.71, p < 0.003), were significant predictors of phenotypically determined ß-lactamase. All the 154 ß-lactamase-producing Klebsiella spp. isolates had at least one genetic marker of ß-lactam/third-generation cephalosporin resistance. The most prevalent genes were blaCTX-M 142/154 (92.2%,) and blaSHV 142/154 (92.2%,) followed by blaTEM 88/154 (57.1%,) and blaOXA 48/154 (31.2%,) respectively. CONCLUSION: Carriage of ß-lactamase producing Klebsiella spp. in stool is common among children discharged from hospital in western Kenya and is associated with longer duration of hospitalization, antibiotic use, and access to treated water. The findings emphasize the need for continued monitoring of antimicrobial susceptibility patterns to inform the development and implementation of appropriate treatment guidelines. In addition, we recommend measures beyond antimicrobial stewardship and infection control within hospitals, improved sanitation, and access to safe drinking water to mitigate the spread of ß-lactamase-producing Klebsiella pathogens in these and similar settings.


Assuntos
Antibacterianos , Infecções por Klebsiella , Klebsiella , Testes de Sensibilidade Microbiana , beta-Lactamases , Humanos , Quênia/epidemiologia , beta-Lactamases/genética , Lactente , Klebsiella/genética , Klebsiella/efeitos dos fármacos , Klebsiella/enzimologia , Klebsiella/isolamento & purificação , Pré-Escolar , Feminino , Masculino , Estudos Transversais , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/tratamento farmacológico , Antibacterianos/farmacologia , Fenótipo , Fezes/microbiologia , Alta do Paciente , Prevalência
12.
BMC Microbiol ; 24(1): 136, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658819

RESUMO

OBJECTIVES: In the recent years, multidrug resistant (MDR) neonatal septicemia-causing Enterobacterales has been dramatically increased due to the extended-spectrum beta-lactamases (ESBLs) and AmpC enzymes. This study aimed to assess the antibiotic resistance pattern, prevalence of ESBLs/AmpC beta-lactamase genes, and Enterobacterial Repetitive Intergenic Consensus Polymerase Chain Reaction (ERIC-PCR) fingerprints in Enterobacterales isolated from neonatal sepsis. RESULTS: In total, 59 Enterobacterales isolates including 41 (69.5%) Enterobacter species, 15 (25.4%) Klebsiella pneumoniae and 3 (5.1%) Escherichia coli were isolated respectively. Resistance to ceftazidime and cefotaxime was seen in all of isolates. Furthermore, all of them were multidrug-resistant (resistant to three different antibiotic categories). The phenotypic tests showed that 100% of isolates were ESBL-positive. Moreover, AmpC production was observed in 84.7% (n = 50/59) of isolates. Among 59 ESBL-positive isolates, the highest percentage belonged to blaCTX-M-15 gene (66.1%) followed by blaCTX-M (45.8%), blaCTX-M-14 (30.5%), blaSHV (28.8%), and blaTEM (13.6%). The frequency of blaDHA, blaEBC, blaMOX and blaCIT genes were 24%, 24%, 4%, and 2% respectively. ERIC-PCR analysis revealed that Enterobacterales isolates were genetically diverse. The remarkable prevalence of MDR Enterobacterales isolates carrying ESBL and AmpC beta-lactamase genes emphasizes that efficient surveillance measures are essential to avoid the more expansion of drug resistance amongst isolates.


Assuntos
Antibacterianos , Proteínas de Bactérias , Farmacorresistência Bacteriana Múltipla , Infecções por Enterobacteriaceae , Testes de Sensibilidade Microbiana , Sepse Neonatal , beta-Lactamases , beta-Lactamases/genética , Humanos , Irã (Geográfico)/epidemiologia , Recém-Nascido , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/epidemiologia , Antibacterianos/farmacologia , Prevalência , Proteínas de Bactérias/genética , Sepse Neonatal/microbiologia , Sepse Neonatal/epidemiologia , Enterobacteriaceae/genética , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/enzimologia , Enterobacteriaceae/isolamento & purificação , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/enzimologia , Enterobacter/genética , Enterobacter/efeitos dos fármacos , Enterobacter/isolamento & purificação , Enterobacter/enzimologia , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação
13.
Libyan J Med ; 19(1): 2344320, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38643488

RESUMO

Pseudomonas aeruginosa is a multidrug-resistant bacterium capable of forming biofilms. This study aimed to assess resistance of clinical isolates from Libyan hospitals to antipseudomonal antibiotics, the prevalence of selected extended-spectrum ß-lactamases and carbapenemase genes among these isolates, and the microorganisms' capacity for alginate and biofilm production. Forty-five isolates were collected from four hospitals in Benghazi and Derna, Libya. Antimicrobial susceptibility was determined using agar disc diffusion. The presence of resistance genes (blaCTXM, blaTEM, blaSHV-1, blaGES-1, blaKPC, and blaNDM) was screened using PCR. Biofilm formation was quantified via the crystal violet assay, while alginate production was measured spectrophotometrically. Resistance to antipseudomonal antibiotics ranged from 48.9% to 75.6%. The most prevalent resistance gene was blaNDM (26.7%), followed by blaGES-1 (17.8%). Moreover, all isolates demonstrated varying degrees of biofilm-forming ability and alginate production. No statistically significant correlation was found between biofilm formation and alginate production. The dissemination of resistant genes in P. aeruginosa, particularly carbapenemases, is of great concern. This issue is compounded by the bacteria's biofilm-forming capability. Urgent intervention and continuous surveillance are imperative to prevent further deterioration and the catastrophic spread of resistance among these formidable bacteria.


Assuntos
Antibacterianos , Proteínas de Bactérias , Biofilmes , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas , Pseudomonas aeruginosa , beta-Lactamases , Pseudomonas aeruginosa/isolamento & purificação , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Líbia/epidemiologia , Humanos , beta-Lactamases/genética , Proteínas de Bactérias/genética , Biofilmes/efeitos dos fármacos , Antibacterianos/farmacologia , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/epidemiologia , Farmacorresistência Bacteriana Múltipla/genética , Hospitais
14.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 391-396, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38645859

RESUMO

Objective: To investigate the clinical characteristics and molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae (CRKP) isolated from patients with bloodstream infections in a large tertiary-care general hospital in Southwest China. Methods: A total of 131 strains of non-repeating CRKP were collected from the blood cultures of patients who had bloodstream infections in 2015-2019. The strains were identified by VITEK-2, a fully automated microbial analyzer, and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. The minimum inhibitory concentration (MIC) was determined by microbroth dilution method. The common carbapenemase resistant genes and virulence factors were identified by PCR. Homology analysis was performed by multilocus sequencing typing. Whole genome sequencing was performed to analyze the genomic characteristics of CRKP without carbapenemase. Results: The 131 strains of CRKP showed resistance to common antibiotics, except for polymyxin B (1.6% resistance rate) and tigacycline (8.0% resistance rate). A total of 105 (80.2%) CRKP strains carried the Klebsiella pneumoniae carbapenemase (KPC) resistance gene, 15 (11.4%) strains carried the New Delhi Metallo-ß-lactamase (NDM) gene, and 4 (3.1%) isolates carried both KPC and NDM genes. Sequence typing (ST) 11 (74.0%) was the dominant sequence type. High detection rates for mrkD (96.2%), fimH (98.5%), entB (100%), and other virulence genes were reported. One hypervirulent CRKP strain was detected. The seven strains of CRKP that did not produce carbapenemase were shown to carry ESBL or AmpC genes and had anomalies in membrane porins OMPK35 and OMPK36, according to whole genome sequencing. Conclusion: In a large-scale tertiary-care general hospital, CRKP mainly carries the KPC gene, has a high drug resistance rate to a variety of antibiotics, and possesses multiple virulence genes. Attention should be paid to CRKP strains with high virulence.


Assuntos
Proteínas de Bactérias , Carbapenêmicos , Infecções por Klebsiella , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Epidemiologia Molecular , Fatores de Virulência , beta-Lactamases , Humanos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/patogenicidade , Proteínas de Bactérias/genética , beta-Lactamases/genética , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/epidemiologia , China/epidemiologia , Carbapenêmicos/farmacologia , Fatores de Virulência/genética , Antibacterianos/farmacologia , Virulência/genética , Masculino , Feminino , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Pessoa de Meia-Idade , Bacteriemia/microbiologia , Bacteriemia/epidemiologia , Sequenciamento Completo do Genoma/métodos
16.
Biosensors (Basel) ; 14(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38667187

RESUMO

Antimicrobial-resistant (AMR) bacteria pose a significant global health threat, and bacteria that produce New Delhi metallo-ß-lactamase (NDM) are particularly concerning due to their resistance to most ß-lactam antibiotics, including carbapenems. The emergence and spread of NDM-producing genes in food-producing animals highlight the need for a fast and accurate method for detecting AMR bacteria. We therefore propose a PCR-coupled CRISPR/Cas12a-based fluorescence assay that can detect NDM-producing genes (blaNDM) in bacteria. Thanks to its designed gRNA, this CRISPR/Cas12a system was able to simultaneously cleave PCR amplicons and ssDNA-FQ reporters, generating fluorescence signals. Our method was found to be highly specific when tested against other foodborne pathogens that do not carry blaNDM and also demonstrated an excellent capability to distinguish single-nucleotide polymorphism. In the case of blaNDM-1 carrying E. coli, the assay performed exceptionally well, with a detection limit of 2.7 × 100 CFU/mL: 100 times better than conventional PCR with gel electrophoresis. Moreover, the developed assay detected AMR bacteria in food samples and exhibited enhanced performance compared to previously published real-time PCR assays. Thus, this novel PCR-coupled CRISPR/Cas12a-based fluorescence assay has considerable potential to improve current approaches to AMR gene detection and thereby contribute to mitigating the global threat of AMR.


Assuntos
Proteínas de Bactérias , Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , Carbapenêmicos , Endodesoxirribonucleases , beta-Lactamases , Carbapenêmicos/farmacologia , beta-Lactamases/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Enterobacteriaceae/genética , Enterobacteriaceae/efeitos dos fármacos , Antibacterianos/farmacologia , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Técnicas Biossensoriais , Farmacorresistência Bacteriana/genética
17.
Curr Microbiol ; 81(5): 131, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592505

RESUMO

Fresh vegetables can harbor antibiotic-resistant bacteria, including extended-spectrum ß-lactamase (ESBL)-producing Enterobacterales. Enterobacter hormaechei is a bacterium belonging to the Enterobacterales order and the most commonly identified nosocomial pathogen of Enterobacter cloacae complex. The purpose of this study was to characterize a multi-drug resistant ESBL-producing E. hormaechei strain isolated from a sample of mixed sprouts. Vegetable samples were pre-enriched in buffered peptone water, followed by enrichment in Enterobacteria Enrichment Broth, and isolation on Chromagar™ ESBL plates. One isolate from a sprout sample was confirmed to produce both ESBL and AmpC ß-lactamases through the combination disk diffusion assay using antibiotic disks containing cefotaxime and ceftazidime with or without clavulanate, and with or without cloxacillin, respectively. The isolate was also resistant to multiple antibiotics, including cefotaxime, ceftazidime, chloramphenicol, trimethoprim-sulfamethoxazole, tetracycline, gentamicin, ampicillin, and amoxicillin-clavulanate, as determined by antimicrobial susceptibility testing. Through whole genome sequencing, the isolate was identified as E. hormaechei 057-E1, which carried multiple antibiotic resistance (AR) genes and a sul2-aph(3″)-Ib-aph(6)-Id-blaTEM-1-ISEcp1 -blaCTX-M-15 gene cluster. Our results further demonstrate the important role of fresh vegetables in AR and highlight the need to develop strategies for AR mitigation in fresh vegetables.


Assuntos
Antibacterianos , Ceftazidima , Enterobacter , Antibacterianos/farmacologia , Cefotaxima , beta-Lactamases/genética , Combinação Amoxicilina e Clavulanato de Potássio
18.
J Infect Dev Ctries ; 18(3): 383-390, 2024 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-38635605

RESUMO

INTRODUCTION: The spread of Carbapenemase-producing Enterobacterales (CPEs) has become a significant concern in Algeria, with limited data available on their presence in community settings. This research investigated the resistance mechanisms of carbapenem-resistant Enterobacterales (CREs) collected from hospitals and the community in Skikda city, Algeria, between December 2020 and June 2022. METHODOLOGY: The study collected Enterobacterales strains resistant to ertapenem from inpatient and outpatient populations. An automated system was used for identification and antibiotic susceptibility testing. ß-lactamase production was evaluated through phenotypic tests and confirmed by standard PCR. Lastly, the carbapenemase genes were sequenced using the Sanger method. RESULTS: 17 CRE were isolated, with 9 from inpatients and 8 from outpatients. These isolates belonged to four species: Klebsiella pneumoniae (n = 8), Escherichia coli (n = 6), Enterobacter cloacae (n = 1), and Proteus mirabilis (n = 1). Of 15 CPEs, 11 were extended-spectrum ß-lactamases (ESBLs) positive, 5 were plasmid-mediated cephalosporinase (AmpC) positive, and 1 harbored all three ß-lactamases. All metallo-ß-lactamase-producing strains carried the New Delhi metallo-beta-lactamase gene (blaNDM), including 5 NDM-1 and 7 NDM-5 variants. The presence of blaOXA-48 and blaOXA-244 was observed in one outpatient strain each. NDM was associated with Cefotaximase Munich (CTX-M) ESBL in 8 isolates, while Cephamycinase (CMY) was detected in 3 NDM-5-producing E. coli. CONCLUSIONS: This research highlights the rising prevalence of carbapenemases NDM-1 and NDM-5 among inpatients and outpatients and supports the notion that OXA-48 is becoming increasingly widespread beyond Algerian hospitals.


Assuntos
Escherichia coli , Pacientes Ambulatoriais , Humanos , Pacientes Internados , Antibacterianos/farmacologia , Argélia/epidemiologia , Prevalência , beta-Lactamases/genética , Proteínas de Bactérias/genética , Klebsiella pneumoniae/genética , Carbapenêmicos/farmacologia , Testes de Sensibilidade Microbiana
19.
Euro Surveill ; 29(16)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38639094

RESUMO

In 2023, an increase of OXA-48-producing Klebsiella pneumoniae was noticed by the Lithuanian National Public Health Surveillance Laboratory. Whole genome sequencing (WGS) of 106 OXA-48-producing K. pneumoniae isolates revealed three distinct clusters of carbapenemase-producing K. pneumoniae high-risk clones, including sequence type (ST) 45 (n = 35 isolates), ST392 (n = 32) and ST395 (n = 28), involving six, six and nine hospitals in different regions, respectively. These results enabled targeted investigation and control, and underscore the value of national WGS-based surveillance for antimicrobial resistance.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Lituânia/epidemiologia , Tipagem de Sequências Multilocus , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/tratamento farmacológico , beta-Lactamases/genética , Proteínas de Bactérias/genética , Hospitais , Surtos de Doenças , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
20.
J Water Health ; 22(3): 572-583, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38557572

RESUMO

Beta-lactamase-producing Enterobacterales bacteria cause severe hard-to-treat infections. Currently, they are spreading beyond hospitals and becoming a serious global health concern. This study investigated the prevalence and molecular characterization of extended-spectrum ß-lactamase and AmpC-type ß-lactamase-producing Enterobacterales (ESBL-PE, AmpC-PE) in wastewater from livestock and poultry slaughterhouses in Ardabil, Iran. A total of 80 Enterobacterales bacteria belonging to 9 species were identified. Among the isolates, Escherichia coli (n = 21/80; 26.2%) and Citrobacter spp. (n = 18/80; 22.5%) exhibited the highest frequency. Overall, 18.7% (n = 15/80) and 2.5% (n = 2/80) of Enterobacterales were found to be ESBL and AmpC producers, respectively. The most common ESBL producer isolates were E. coli (n = 9/21; 42.8%) and Klebsiella pneumoniae (n = 6/7; 85.7%). All AmpC-PE isolates belonged to E. coli strains (n = 2/21; 9.5%). In this study, 80% of ESBL-PE and 100% of AmpC-PE isolates were recovered from poultry slaughterhouse wastewater. All ESBL-PE and AmpC-PE isolates were multidrug-resistant. In total, 93.3% of ESBL-PE isolates harbored the blaCTX-M gene, with the blaCTX-M-15 being the most common subgroup. The emergence of ESBL-PE and AmpC-PE in wastewater of food-producing animals allows for zoonotic transmission to humans through contaminated food products and contaminations of the environment.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Animais , Humanos , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Aves Domésticas/microbiologia , Matadouros , Gado , Águas Residuárias , Prevalência , Irã (Geográfico) , Antibacterianos , beta-Lactamases/genética , Proteínas de Bactérias/genética , Bactérias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA